
Drupal 9 configuration
schema cheat sheet

2.0 - December 22. 2021.

Configuration schema is a YAML based declarative
format in Drupal 9 to describe the structure of
configuration files. It is then applied to:

• Typecast configuration values to ensure type
consistency (see StorableConfigBase::castValue())

• Automated persistence of configuration entity
properties (see ConfigEntityBase::toArray())

• Extraction of translatable configuration strings for
localize.drupal.org and Interface Translation

• Automated generation of the configuration
translation user interface (see the core module)

• Ordering config keys automatically for consistent
configuration structure (from Drupal 9.3.0) 

Module settings example

config/install/my_module.settings.yml

Schema keys and base types

Define configuration object: schema key
should be the filename of the configuration
object. Typically modulename.settings.
Inherit from config_object (see earlier example). 

Define configuration entity: schema key
should be the module name followed by
the config entity type ID (from the PHP
annotation), followed by an asterisk (for matching
the name of the config entity). Inherit from
config_entity. 
 
Examples of text format config entities: 
filter/config/install/filter.format.plain_text.yml

standard/config/install/filter.format.basic_html.yml

Are all matched by this config schema in 
filter/config/schema/filter.schema.yml:

type: warning 
message: ‘Hello!’ 
langcode: en

my_module.settings: 
 type: config_object  
 mapping: 
 type: 
 type: string 
 label: ‘Message type’ 
 message: 
 type: label 
 label: ‘Message text’

config/schema/my_module.schema.yml

Settings in config

The langcode key
is inherited from
config_object

filter.format.*:

 type: config_entity

 label: 'Text formats' 
 mapping:

 name:

 type: label

 label: 'Name'

 (….)

1

2

Define dynamic part of another config
structure: the key used and potential base
type used would be as dictated by the
extension point defined where your data
structure slots into. Views handlers, display plugins,
etc. would be in this group. Examples later.

3

Filename and file location

Put schema files in your module or theme’s  
config/schema directory. A simple extension would
define a modulename.schema.yml file, but any
number of schema YAML files are possible to
logically group definitions (see Views module for an
extensive example).

Schema is always subtyping

All of config schema is about subtyping from
existing types. The my_module.settings example
earlier is subtyping config_object (which is a subtype
of the mapping type). All keys from the subtype and
sub-subtype add up to the final type. Core base
types are defined in core.data_types.schema.yml.

Base scalar types boolean

string integer timestamp

uri float email

Common string subtypes

There are some purpose specific subtypes of the
simple string type, particularly for UI generation and
translatability purposes, such as:

• label: short and translatable string

• plural_label: a label that contains plural variants

• text: long and translatable string

• uuid: a string that is a UUID

• path: a string that is a Drupal path

• date_format: a string that is a PHP date format

• color_hex: a string that is a hex color value

Lots of built in
properties inherited
from config_entity.

http://localize.drupal.org

Mappings and sequences

There are two base list types defined by
configuration schema. If all keys can be predefined
in the schema structure, then you should use a
mapping, otherwise you should use a sequence (even
if the list’s keys are strings).

time: 1640116813 
messages: 
 - ‘Hello!’ 
 - ‘Hi!’ 
langcode: en

my_module.settings: 
 type: config_object  
 mapping: 
 time: 
 type: timestamp 
 label: ‘When to print the messages’ 
 messages: 
 type: sequence 
 label: ‘Message list’ 
 sequence: 
 type: label 
 label: ‘Message text’

config/schema/my_module.schema.yml

config/install/my_module.settings.yml

In the above example, the settings structure has a
known list of keys, including the time key that
defines a timestamp and a messages key that
defines a list of strings. The later list can have any
number of items though, so it is a sequence.
Sequences don’t need to be numeric, they could
have string keys.

Translatability

The label, plural_label, date_format and text types are
defined as translatable: true.

For drupal.org hosted projects, translatable values are
exported to localize.drupal.org for community
translation. When an extension is installed, translatable
strings from default configuration are saved into the
interface translation database and may be replaced in
active configuration with translated values as available.

To define your own translatable value that is not
logically of any other already defined type, add
translatable: true. Only use this on single string value
types. If possible, use the base translatable types as
they provide specific translation UI elements. Add
translation context as needed.

type: warning 
message: ‘Hello!’ 
langcode: en

my_module.settings: 
 type: config_object  
 mapping: 
 type: 
 type: string 
 label: ‘Message type’ 
 message: 
 type: label 
 translation context: ‘Message to print’  
 label: ‘Message text’

config/schema/my_module.schema.yml

config/schema/my_module.schema.yml

Already translatable

A list of any
number of things

Each item is a
translatable short
string

Extending an
already mapping
based type

Sequence with string keys

The previous schema matches this configuration too,
because sequence does not specify anything about the
keys or the number of items. String keyed sequences can
be one way to do dynamic typing though, see later.

Context is useful for
short strings

time: 1640116813 
messages: 
 long: ‘Hello!’ 
 short: ‘Hi!’ 
 extra: ‘Welcome friend!’ 
langcode: en

config/install/my_module.settings.yml

Common mapping subtypes

Core defines some common mapping structures as
reusable patterns for your configuration.

• theme_settings: base type for a theme settings file

• mail: a mapping with subject and body keys, use to store

an email subject and body combination

• text_format: a mapping with text and format keys, use

for text to be formatted with a text format

• route: a route_name string and route_params sequence

Ignore and undefined

Finally, these two special types are to be avoided at all
cost. The undefined type is used internally to represent
unspecified schema, so it’s pointless to use. You may use
ignore if a sub-structure of the config is absolutely
impossible to define. In this case that part will not benefit
from any of the advantages of config with schema.

http://drupal.org
http://localize.drupal.org

Dynamic type with [%parent]

Defining the type of a key based on a parent’s child.

my_module.settings: 
 type: config_object  
 mapping: 
 message: 
 type: mapping 
 mapping: 
 variant: 
 type: string 
 label: ‘Message variant’ 
 value: 
 type: my_module_value.[%parent.variant] 
 
my_module_value.single: 
 type: label 
 label: ‘Message text’ 
 
my_module_value.multiple: 
 type: sequence 
 label: ‘Message list’ 
 sequence: 
 type: label 
 label: ‘Message text’

config/schema/my_module.schema.yml

Use the variant key
from parent data

Our own types
prefixed with
module name to
avoid conflict with
top level types

Dynamic type with [childkey]

Defining the type of the wrapper based on data within.

message:  
 variant: single 
 value: ’Hello!’ 
langcode: en

config/install/my_module.settings.yml

my_module.settings: 
 type: config_object 
 mapping: 
 message: 
 type: my_module_message.[variant] 
 
my_module_message_base: 
 type: mapping 
 mapping: 
 variant: 
 type: string 
 label: ‘Message variant’ 
 
my_module_message.single: 
 type: mymodule_message_base 
 mapping: 
 value: 
 type: label 
 label: ‘Message text’ 
 
my_module_message.multiple: 
 type: mymodule_message_base 
 mapping: 
 value: 
 type: sequence 
 label: ‘Message list’ 
 sequence: 
 type: label 
 label: ‘Message text’

config/schema/my_module.schema.yml

Use the variant key from
the data structure under it

Custom base
type to define
shared
mapping
format and
variant key

Three ways of dynamic typing

Parts of the configuration structure may depend on
data elsewhere in configuration. There are three
ways to define dynamic types based on data:

1. Use [%parent] to define type based on a parent
property value.

2. Use [childkey] to define type based on an
embedded value.

3. Use [%key] to define type based on the key of a
list item (especially useful for sequences).

Take this data structure where the type of the value
key depends on the contents of the variant key. It is
impossible to define schema for this without
considering the data.

message:  
 variant: multiple 
 value:  
 - ’Hello!’ 
 - ‘Hi!’ 
langcode: en

config/install/my_module.settings.yml

Two potential
versions of the
same file

There are two ways to approach this, either define
the value key based on it’s sibling (the parent’s)
variant key or the top message key based on the
underlying variant value. Use what is more
appropriate based on other data elements.

Here, the type for the message key is a custom type
that is dynamic based on the value of the parent’s
(from the point of view of message) variant key. This
opens the door for other variants down the line that
have their own structure without the need to change
the main wrapping structure.

 
Chaining is possible as %parent.%parent…. Combine
with %type to get the parent’s type: %parent.%type.

Only need to
define the
unique keys of
the mapping as
the rest are
inherited from
the base type

This looks more complicated at first but there are cases
where this approach makes most sense to use.

Schema debugging

To debug configuration schemas, use the Configuration
Inspector module (http://drupal.org/project/
config_inspector) which helps you find schema
mismatches with active configuration and inspect how
your schema is applied to your configuration.

Schema testing

• All BrowserTestBase and KernelTestBase extending

tests define $strictConfigSchema = TRUE by default,
which results in strict scheme adherence testing for all
configuration saved. Only opt out of this if you really
need to. Your schema should match your data and
pass this test.

• Use SchemaCheckTestTrait in your test to explicitly
validate with specific config schemas.

More documentation

See https://www.drupal.org/node/1905070 for even
more configuration schema documentation and
examples.

Issues?

• For issues with core configuration schemas, tag them

with ‘Configuration schema’ and ‘Configuration
system’ and pick the appropriate module as
component.

• For issues with the configuration schema system itself,
use the ‘configuration system’ component and also
tag with ‘Configuration schema’.

Cheat sheet created by Gábor Hojtsy 
https://www.drupal.org/user/4166/contact

messages:  
 ‘single:long’: ’Hello!’ 
 ‘single:short’: ‘Hi!’ 
 ‘multiple:mix’: 
 - ‘Good morning!’ 
 - ‘Good night!’ 
langcode: en

config/install/my_module.settings.yml

my_module.settings: 
 type: config_object 
 mapping: 
 messages: 
 type: sequence 
 label: ‘List of messages’ 
 sequence: 
 type: my_module_message.[%key] 
 
my_module_message.single:*: 
 type: label 
 label: ‘Message text’ 
 
my_module_message.multiple:*: 
 type: sequence 
 label: ‘Message list’ 
 sequence: 
 type: label 
 label: ‘Message text’

config/schema/my_module.schema.yml

Dynamic type with [%key]

This is useful when a list of items is typed based on
(part of) the list item key.

Type is the prefix of
the key, e.g. ’single:1’

Use wildcard match to
match to the prefix
regardless of further
content of the key

Built-in extension points

There are various built-in schema extension points in
core fore common situations. Some examples:

• Theme settings have a third_party_settings key
which is a sequence of type
theme_settings.third_party.[%key], allowing to add
arbitrary third party settings to theme settings.

• Configuration entities have a third_party_settings
key which is a sequence of type  
[%parent.%parent.%type].third_party.[%key]. So
that is based on the config entity type name, such
as contact.form.*.third_party.contact_storage
would be settings for contact storage on all
contact forms.

• Views has probably the most extensive list, eg. 
views.display.[%parent.display_plugin] for displays,
views.style.[%parent.type] for styles,
views.relationship.[plugin_id] for relationships, etc.

Advanced properties

Config schema elements can take some advanced
properties that are rarely used.

• Set nullable: true to explicitly define that a key is
optional and may not be present or have value.
Practically used for mappings and sequences to
accept a NULL value in their place, see
SchemaCheckTrait::checkValue().

• Set deprecated: ‘Deprecation message text…’ to
specify a key as deprecated.

• Very rarely set the class and definition_class keys
to assign PHP classes implementing the parsing
and definition of the value.

http://drupal.org/project/config_inspector
http://drupal.org/project/config_inspector
https://www.drupal.org/node/1905070
https://www.drupal.org/user/4166/contact

